いろいろな問題集に手を出す必要はありません。  \(\sqrt{ (ルート) }\) 漸近線を書く. ところが  -(負の数)の \( \sqrt {\,5\,}\) は、 という記号を使います。 というか、終わりはありませんのでいつまでも書き続けるか途中でやめるしかありません。 もしルートの中をマイナスにしてしまったら間違えていると考えて良いです。, \(\sqrt {a^2}= {\sqrt {a}}^2=(\sqrt{a})^2=a\), 算数で整数から小数、分数に数字の世界が広がったときのように、 平方根と無理数を表す根号√(ルート)の使い方の説明です。 普通に、\(\sqrt{a}\) と書かれているのは、\( \sqrt[2]{a}\) の前にある\(\,2\,\)が省略されているのです。, クラブ活動で忙しい! 対数グラフを初めて見たとき、ほとんどの方がこう思われたのではないでしょうか。なにこれ?どう読むの?何の役に立つの?この記事では、そんな疑問を解消するために、対数グラフの読み方と使い所を具体例を交えて説明します。このページのまとめ対数グラフは しかし、中学になって円周率は\(\,\pi\,\)と表すようになりました。, このように平方根が無理数になるときは、 例えば \( a\) の\(\,2\,\)乗根(平方根)は、単に \( \sqrt{a}\) と表しますよね。 エクセルでルート(平方根)を計算する方法やルート記号(√)の表示方法を解説しています。sqrt/power関数を使った方法はもちろん、べき乗記号で二乗だけでなく、三乗・四乗の計算も可能です。当記事で詳しく解説しています。  \( ({\sqrt {\,10\,}})^2\) も\(\,10\,\)になるのです。, 例えば、 \( \sqrt{\,5\,}\) は+の数、つまり正の数です。  \(\sqrt{\,(-5)^2\,}=5\), また、ルートごと\(\,2\,\)乗されていてもルートは外れます。 増減表を使った4次関数のグラフの書き方 増減表を用いて、4次関数"f(x)=x⁴−2x²"のグラフを書いてみましょう。 4次関数だろうが5次関数だろうが、3次関数のグラフを書くのと同じ方法で、グラフを描くことができます。 ステ グラフの書き方(ExcelとLibreOfficeを利用した表計算-グラフの書き方) つづき _ ここでは2群のデータの平均値を比較する棒グラフの書き方について学修します。 (1)表計算ソフトについて (2) 表の作成 (3) … (3)\({(\sqrt{0.4})^2}\), \(\sqrt a\) とは\(\,2\,\)乗したら \( a\) になる数のことです。 だから \( \sqrt{10^2}=10\) になります。, このようにルートの中身が\(\,2\,\)乗になった部分は、ルートが外れて整数になるのです。, \({(\sqrt {\,a\,})}^2=a\) とルートのついた数を\(\,2\,\)乗してもルートははずれます。 \(\,5\,\)の平方根は、\(\,2.2360679\cdots\,\) と無限に続く小数になります。, この循環しない無限に続く小数が無理数ですが、いつまでも書いて行くのは非常に効率が悪いです。 (\(\,3\,\)乗したらルートの中の数字になる数です。) (2)\( \sqrt{(-16)^2}\) ルートのついた無理数のあつかいは後の数学に大きく影響しますのでしっかり理解しておいた方が良いですよ。 平方根の復習からやっておきましょう。, \(\,x^2=a\,\)のとき\(\,\pm \,x\,\)は\(\,a\,\)の平方根, \(\,4\,\)の平方根は \( \pm\,2\) であるように平方数の平方根は整数を使って表せます。, ところが、 微分・積分の計算やグラフの書き方、不等式の解き方なども説明しますので、この記事を通してぜひマスターしてくださいね!, \(\bf{\color{salmon}{\displaystyle y = \frac{f(x)}{g(x)}}}\) の形で表される関数を分数関数という。, 一次分数関数は、どれも反比例の関数 \(\displaystyle y = \frac{a}{x}\) と同じ直角双曲線です。, グラフの平行移動について忘れてしまっている人は、以下の記事で復習しておきましょう!, 関数 \(\displaystyle y = \frac{a}{x}\) のグラフを \(x\) 軸方向に \(p\)、, \begin{align}\bf{\color{salmon}{\displaystyle y = \frac{a}{x − p} + q}}\end{align}, なお、\(\displaystyle y = \frac{a}{x − p} + q\) の漸近線の方程式は, \(\bf{\color{salmon}{x = p}}\) および \(\bf{\color{salmon}{y = q}}\), 一次分数関数の式を基本形に直すのは簡単で、\(\bf{\text{(分子)} \div \text{(分母)}}\) をするだけです。, \(\displaystyle y = \frac{3x + 4}{x + 1}\), \(3x + 4\) を \(x + 1\) で割ると、商 \(3\)、余り \(1\) なので、, \(\begin{align} y &= \frac{3x + 4}{x + 1} \\ &= \frac{3(x + 1) + 1}{x + 1} \\ &= \color{red}{\frac{1}{x + 1} + 3} \end{align}\), \(\displaystyle y = \frac{3x + 4}{x + 1} = \frac{1}{x + 1} + 3\), 基本形の式から、漸近線は \(x = −1\), \(y = 3\) とわかります。, 一次分数関数のグラフを書くときは、最低限 漸近線と(あれば)軸との交点を示す必要があります。, \(x\) 軸との交点は \(y = 0\) を代入して、\(y\) 軸との交点は \(x = 0\) を代入してそれぞれ求めます。, \(\displaystyle 0 = \frac{1}{x + 1} + 3\) より \(\displaystyle \left( −\frac{4}{3}, 0 \right)\), \(\displaystyle y = \frac{1}{0 + 1} + 3 = 4\) より \((0, 4)\), 軸との交点以外の座標は必ずしも示す必要はありませんが、ある程度きれいなグラフを書きたい場合は数点の座標を調べておくと安心です。, (例)\(\displaystyle y = \frac{x^2 + x − 5}{x − 2}\) のグラフ, \(\begin{align} y &= \frac{(x − 2)(x + 3) + 1}{x − 2} \\ &= (x + 3) + \frac{1}{x − 2} \end{align}\), \(\begin{align} y &= (x + 3) + \frac{1}{x − 2} \\ &= (x − 2) + \frac{1}{x − 2} + 5 \\ &\geq 2\sqrt{(x − 2) \cdot \frac{1}{x − 2}} + 5 \\ &= 7 \end{align}\), \(\displaystyle x − 2 = \frac{1}{x − 2}\) すなわち \(x = 3\), 対称性を考えると、\(x < 2\) においては点 \((1, 3)\) で最大値をとる。, \(\displaystyle y = \frac{f(x)}{g(x)}\) の導関数は、, \begin{align} \bf{\color{salmon}{y’ = \frac{f’(x)g(x) − f(x)g’(x)}{\{g(x)\}^2}}} \end{align}, \begin{align} \bf{\color{salmon}{y’ = \left( \frac{1}{g(x)} \right)’ = −\frac{g’(x)}{\{g(x)\}^2}}} \end{align}, 項の順序を間違えやすいので、「分子 \(f(x)\) を先に微分する!」と覚えておきましょう。, (1) \(\displaystyle y = \frac{x + 2}{2x^3 − 1}\), (2) \(\displaystyle y = \frac{2\sqrt{x}}{\log x}\), \(\displaystyle = \frac{(x + 2)’(2x^3 − 1) − (x + 2)(2x^3 − 1)’}{(2x^3 − 1)^2}\), \(\displaystyle = \frac{(2x^3 − 1) − 6x^2(x + 2)}{(2x^3 − 1)^2}\), \(\displaystyle = \frac{2x^3 − 1 − 6x^3 − 12x^2}{(2x^3 − 1)^2}\), \(\displaystyle = \frac{−4x^3 − 12x^2 − 1}{(2x^3 − 1)^2}\), \(\displaystyle = \color{red}{−\frac{4x^3 + 12x^2 + 1}{(2x^3 − 1)^2}}\), \(\begin{align} (2\sqrt{x})’ &= (2x^{\frac{1}{2}})’ \\ &= 2 \cdot \frac{1}{2} x^{−\frac{1}{2}} \\ &= \frac{1}{\sqrt{x}} \end{align}\), \(\displaystyle (\log x)’ = \frac{1}{x}\), \(\begin{align}\displaystyle y’ &= \frac{(2\sqrt{x})’ \log x − 2\sqrt{x} (\log x)’}{(\log x)^2}\\&= \frac{\frac{1}{\sqrt{x}} \log x − \frac{2\sqrt{x}}{x}}{(\log x)^2}\\&= \frac{\frac{\log x}{\sqrt{x}} − \frac{2}{\sqrt{x}}}{(\log x)^2}\\&= \color{red}{\frac{\log x − 2}{\sqrt{x} (\log x)^2}}\end{align}\), \(\displaystyle \int \frac{1}{x} dx = \log x + C\) より、, \begin{align}\color{salmon}{\displaystyle \int \frac{f’(x)}{f(x)} dx = \log|f(x)| + C}\end{align}, 分母よりも分子の次数が \(1\) 低い場合は、このパターンでないかチェックしましょう。, \(\displaystyle \int \frac{x}{x^2 + 3} dx\), \(\displaystyle = \frac{1}{2} \int \frac{2x}{x^2 + 3} dx\), \(\displaystyle = \frac{1}{2} \int \frac{(x^2 + 3)’}{x^2 + 3} dx\), \(\displaystyle = \color{red}{\frac{1}{2} \log(x^2 + 3) + C}\), \(\displaystyle \int \frac{x^2 + 1}{2x^3 + 6x + 1} dx\), \(\displaystyle = \frac{1}{6} \int \frac{6x^2 + 6}{2x^3 + 6x + 1} dx\), \(\displaystyle = \frac{1}{6} \int \frac{(2x^3 + 6x + 1)’}{2x^3 + 6x + 1} dx\), \(\displaystyle = \color{red}{\frac{1}{6} \log|2x^3 + 6x + 1| + C}\), 分母が一次式の因数で因数分解できる場合は、部分分数分解で項をわけると積分しやすくなります。, (例1)\(\displaystyle \int \frac{2}{x^2 + 3x + 2} dx\), \(\begin{align}\displaystyle \frac{2}{x^2 + 3x + 2} &= \frac{2}{(x + 1)(x + 2)}\\&= 2 \left( \frac{1}{x + 1} − \frac{1}{x + 2} \right)\end{align}\), \(\displaystyle \int \frac{2}{x^2 + 3x + 2} dx\), \(\displaystyle = 2 \int \left( \frac{1}{x + 1} − \frac{1}{x + 2} \right) dx\), \(\displaystyle = \color{red}{2\log \left| \frac{x + 1}{x + 2} \right| + C}\), (例2)\(\displaystyle \int \frac{3x − 1}{x^2 + 4x + 4} dx\), \(\begin{align}\displaystyle \frac{3x − 1}{x^2 + 4x + 4} &= \frac{3x − 1}{(x + 2)^2}\\&= \frac{A}{(x + 2)^2} + \frac{B}{x + 2}\end{align}\), \(\displaystyle \int \frac{3x − 1}{x^2 + 4x + 4} dx\), \(\displaystyle = \int \left\{ −\frac{7}{(x + 2)^2} + \frac{3}{x + 2} \right\} dx\), \(\displaystyle = \color{red}{\frac{7}{x + 2} + 3\log|x + 2| + C}\), \(\bf{\color{salmon}{x = a\tan\theta}}\) に置換するとうまく積分できることが多いです。, (例)\(\displaystyle \int_0^{\sqrt{3}} \frac{1}{x^2 + 3} dx\), \(\displaystyle \frac{1}{x^2 + 3} = \frac{1}{3(\tan^2\theta + 1)}\), \(\displaystyle \frac{dx}{d\theta} = \frac{\sqrt{3}}{\cos^2\theta}\) より \(\displaystyle dx = \frac{\sqrt{3}}{\cos^2\theta} d\theta\), \(\displaystyle \int_0^{\sqrt{3}} \frac{1}{x^2 + 3} dx\), \(\displaystyle = \int_0^{\frac{\pi}{4}} \frac{1}{3(\tan^2\theta + 1)} \cdot \frac{\sqrt{3}}{\cos^2\theta} d\theta\), \(\displaystyle = \int_0^{\frac{\pi}{4}} \frac{\cos^2\theta}{3} \cdot \frac{\sqrt{3}}{\cos^2\theta} d\theta\), \(\displaystyle = \int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{3}} d\theta\), \(\displaystyle = \left[ \frac{\theta}{\sqrt{3}} \right]_0^{\frac{\pi}{4}}\), \(\displaystyle = \color{red}{\frac{\pi}{4\sqrt{3}}}\), 分母を払う方法は場合分けが必要ですし、グラフを書く方法は式が複雑だと手間になります。, 不等式 \(\displaystyle \frac{2}{x + 3} < x + 4\) を解け。, 左辺が分数式になっているので、分母の \(x + 3\) は \(0\) になり得ないと考えます。, 例題では両辺に \((x + 3)\) をかければよいので、\(x > −3\) と \(x < −3\) で場合分けしましょう。, \(\color{red}{−5 < x < −3, \,\, −2 < x}\), \(\displaystyle \frac{2}{x + 3} < x + 4\), \(\displaystyle \frac{2}{x + 3} − (x + 4) < 0\), \(\displaystyle \frac{2 − (x + 3)(x + 4)}{x + 3} < 0\), \(\displaystyle \frac{2 − (x^2 + 7x + 12)}{x + 3} < 0\), \(\displaystyle −\frac{x^2 + 7x + 10}{x + 3} < 0\), \(\displaystyle −\frac{(x + 2)(x + 5)}{x + 3} < 0\), 分母分子が因数分解された形になったら、不等式を満たす \(x\) の値の範囲を考えます。, (因数) \(= 0\) となる \(x\) の値が符号の切り替わる境界となります。, 分数式のまま考える場合は次のような簡単な符号表を作るか、頭の中で代入計算をするとよいでしょう。, 分数式のままだと頭がこんがらがるという場合は、分母の \(\bf{2}\) 乗を両辺にかけて分母を払い、\(y =\) (左辺) のグラフと \(x\) 軸との関係を考えましょう。, \(y =\) (左辺) と \(y =\) (右辺) のグラフを書いて、グラフの上下関係を考えます。, ①は \(y = 0\), \(x = −3\) を漸近線とする直角双曲線、②は直線である。, \(\displaystyle \frac{2}{x + 3} = x + 4\) のとき、, 例題のように一次分数関数程度のグラフであればささっと書けますが、二次以上になると少し大変になります。, ただ、グラフを書いて求めよと指定される場合もあるので、流れは理解しておきましょう!, 漸近線の方程式が \(x = 1\), \(y = −3\) で点 \((2, 1)\) を通る双曲線について、次の問いに答えよ。, \(\displaystyle y = \frac{a}{x − 1} − 3\), \(\displaystyle 1 = \frac{a}{2 − 1} − 3\), \(\displaystyle y = \frac{4}{x − 1} − 3\), 答え: \(\color{red}{\displaystyle y = \frac{4}{x − 1} − 3}\), (または \(\color{red}{\displaystyle y = \frac{−3x + 7}{x − 1}}\)), \(\displaystyle y = \frac{2x + 3}{x − 1}\) のグラフは、\(\displaystyle y = \frac{−x + 1}{x + 4}\) を \(x\), \(y\) 軸方向にどれだけ平行移動したグラフか。, \(y = \displaystyle \frac{2x + 3}{x − 1} = \frac{5}{x − 1} + 2 \) …①, \(\displaystyle y = \frac{−x + 1}{x + 4} = \frac{5}{x + 4} − 1\), これが \(x\) 軸方向に \(p\), \(y\) 軸方向に \(q\) だけ平行移動したグラフを①とすると、, \(\displaystyle y = \frac{5}{x + 4 − p} − 1 + q\) …②, \(\color{red}{x}\) 軸方向に \(\color{red}{5}\)、\(\color{red}{y}\) 軸方向に \(\color{red}{3}\) だけ平行移動したグラフ, 不等式 \(\displaystyle \frac{4x − 3}{x − 2} \geq 5x − 6\) を解け。, \(\displaystyle \frac{4x − 3}{x − 2} \geq 5x − 6\) より, \(\displaystyle \frac{4x − 3}{x − 2} − (5x − 6) \geq 0\), \(\displaystyle \frac{(4x − 3) − (x − 2)(5x − 6)}{x − 2} \geq 0\), \(\displaystyle \frac{(4x − 3) − (5x^2 − 16x + 12)}{x − 2} \geq 0\), \(\displaystyle \frac{−5x^2 + 20x − 15}{x − 2} \geq 0\), \(\displaystyle −\frac{5(x^2 − 4x + 3)}{x − 2} \geq 0\), \(\displaystyle \frac{(x − 3)(x − 1)}{x − 2} \leq 0\), ここで、両辺に \((x − 2)^2\) をかけても不等号の向きは変わらないので, 答え: \(\color{red}{x \leq 1, 2 < x \leq 3}\), 分数関数の式変形が素早くできると、グラフを書いたり問題を解いたりするのがとても楽になります。.